PHYSICAL REVIEW E VOLUME 57, NUMBER 5 MAY 1998

Effect of random synaptic dilution on recalling dynamics in an oscillator neural network
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In the present paper, we study the effect of random synaptic dilution in an oscillator neural network in which
information is encoded by the relative timing of neuronal firing. In order to analyze the recalling process in this
oscillator network, we apply the method of statistical neurodynamics. The results show that the dynamical
equations are described by some macroscopic order parameters, such as that representing the overlap with the
retrieved pattern. We also present the phase diagram showing both the basin of attraction and the equilibrium
overlap in the retrieval state. Our results are supported by numerical simulation. Consequently, it is found that
both the attractor and the basin are preserved even though dilution is promoted. Moreover, as compared with
the basin of attraction in the traditional binary model, it is suggested that the oscillator model is more robust
against the synaptic dilution. Taking into account the fact that oscillator networks contain more detailed
information than binary networks, the obtained results constitute significant support for the plausibility of
temporal coding[S1063-651X%98)11405-§

PACS numbdps): 87.10+¢€, 05.90+m

[. INTRODUCTION studies are restricted to properties of the attractor, such as
equilibrium overlap and storage capacity. However, consid-
In recent years, many attempts have been made to treating the associative ability for a noisy pattern to be dynami-
neural network models more realistically than did traditionalcally corrected, in order to obtain a proper measure of a
ones such as the Hopfield mod@l. Progress in the physi- model’'s performance, it is necessary to study the basin of
ological understanding of real neural systems, for examplegttraction also. In order to discuss the basin, we must treat
neuronal activity and morphology of synaptic connectivities,the dynamics of recalling.
has led theoretical interests to those various models with For traditional models, several theoretical analyses on dy-
biological validity. With this trend, many models whose pur- namics of retrieval processes have been reported. Using the
pose is to grasp the essence of more detailed dynamics inmethod of generating functionals and path integrals, a gen-
neuron have been proposed and analyzed. From the theoretral theory can be formulatefd 7]. Although this method
ical point of view, models capable of describing the continu-yields an exact description, a suitable approximation is re-
ous behavior of neuronal activities are expected to be supeuired in order to obtain practical resuftk3]. In the case of
rior in information processing. In particular, oscillator neural parallel dynamics, the result turns out to be simple so that the
networks have come to be one of the most intriguing modelgxact prediction of the retrieval dynamics for the initial few
in this context, since it was reported that collective oscilla-steps is possiblgl9]. As for arbitrary finite time scale, the
tory behavior may contribute to information processing indynamical replica theory has been proposed recdry.
biological systemd2,3]. This is because such models are On the other hand, as an approximation method, the statisti-
simple enough to allow for theoretical analysis, while theycal neurodynamics theory has been propog&t22. Al-
also contain the essence of the temporal features of neuronddough the approximation used in this approach is crude in a
activity. The results obtained through the analysis of such @ense, it is practically useful to predict long term behavior
simple model are sure to further our understanding not onlyvhen a network succeeds in retrievild3]. Finally, we
of more complex models but of real neural systems. should note that, under suitable conditions, the theoretical
Many interesting analyses concerning oscillator neuraftesult from the statistical neurodynamics can be obtained
networks have been reportp#11]. However, we will only  also by the path integral method.
briefly survey the results related to our model. In the case of In the present paper, we discuss the retrieval dynamics in
autoassociation of random phase patterns with Hebbiaan oscillator network with diluted synapses. However, it is
learning, the storage capacity,=0.038 is estimated using expected that the rigorous treatment for such a network is
the replica theonf12,13. An oscillator model with sparse more complicated than that for traditional binary models.
connectivity has been analyzed by Nogk#]. We have in-  Therefore, following our previous workl6], we apply the
vestigated equilibrium properties in the situation involving theory of statistical neurodynamics, which enable us to ob-
synaptic damagé¢15]. Recently, we have studied the re- tain fruitful results more easily. In the next section, we in-
trieval dynamics for both autoassociation and phase seroduce an oscillator neural network model treated here. Sec-
guence generatdd6]. However, despite these works, oscil- tion Il contain a theoretical analysis of the recalling process
lator models remain poorly understood. in this network. Using the derived dynamical equations de-
For the purpose of estimation of performance with regardscribing the time development of some macroscopic param-
to associative memory, it is necessary to consider two imporeters such as that representing overlap, we examine the effect
tant aspects of association, one concerning the attractor ard dilution on both the attractor and the basin. These theo-
the other concerning the basin. However, most previousetical results are verified by means of numerical simulation
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in Sec. IV. In Sec. V, we give a brief summary and conclu- 1P _
sion. J; :NZI EEL, (5)
=

Il. OSCILLATOR NEURAL NETWORK MODEL ~u - .
where gf‘ is the complex conjugate Gfﬂ‘

We now describe the model treated in the present paper. To discuss robustness against damage of synaptic connec-
The state of theéth neuron at time is represented by tions, we define

(1) = i —  Cji
Si(t)=exdigi(t)], () 3, :%J” , ©)
where ¢;(t) is the phase of théth neuron at timet. We
should remark that this phase corresponds to the timing ddis the formulation for randomly diluted synapses. Here, the
neuronal firing. The oscillator network evolves according toc;; are independent random variables, which assume the val-
the synchronous dynamics: ues 1 and 0 with probabilitiesand 1- c, respectively. Note

that the dilution parametear represents the ratio of connec-
hi(t) N tions. In the limitN—c, the expression in E¢(6) can be
S(t+1)= o hi(t):; JijSi(t), (2)  regarded as that of synaptic connections with static noise
[25],

whereh;(t) is the internal potential of thigh neuron at time
t andJ;; is the synaptic connection between filte and the
jth neurons.

We construct this model not only as a simple extension o
traditional models but following a theoretical basis of
coupled oscillator systems. The system consists of a numb
of nonlinear oscillatory units. Although, in general, even the” as
behavior of such a unit is described by a dynamical equation
involving a set of state variables, it is well known that such a 2 ) (8)
system can be reduced to a system characterized by simple c
phase variables under suitable conditif®4]. The equations

obtained with such a reduction technique are given by For the sake of s_implicity in later theoretical analysis, we
adopt the expression of E(j7).

Jij=Jij+ my )

]:I'he synaptic noisey;; is a complex Gaussian noise with

mean 0 and variance?/N. It is easy to determine the rela-

éilon between the dilution ratio and the variance parameter
2

do, N To investigate various features of the recalling process, it
d_tI: Kijsin(¢j— &+ Bij). (3)  is useful to define the overlap
o
j#i L
To interpret the above system in the context of traditional MA(t)=mH(t)el* U= N-El Ef‘Sj(t) 9
=

neural networks, we introduce the complex representation
S =exp(¢) into the above equation. Then, the equilibrium

state satisfies the conditions as the order parameter of our system. As the network’s con-

figuration S;(t) approaches the target pattefr, the abso-

h N lute valuem,, increases to unity.
S=r—, h=> 35, (4) Finally, in the retrieval process of the oscillator neural
[hil T network
whereJ;;=Kj;exp(g;). Clearly, the equilibrium staté4) of h;(t)
the dynamics described by E(B) is identical with that of S(t+1)= m (10)

the dynamics described by E@). However, generally, ow-

ing to different dynamics, these systems may exhibit quanti- N
tative or even qualitative differences. Numerical simulation hi(t)=>, J;;Si(t), (12)
suggests that these differences are in most cases negligible R
[16].
The synaptic connectiody; should be determined appro- — G P _
priately so that the system can perform as an associative Jij:mEl §rér, (12
e

memory model. We denote the set of patterns to be memo-

rized by the network as complex variableg,=¢' % The we mainly discuss the time development of the ove@p
value &' represents the state of thigh unit in the uth pat-  along with certain other macroscopic parameters.

tern. Here, we examine the case of random pattetiss a

uniform random number between 0 anér2To make the IIl. THEORETICAL ANALYSIS

network memorizg such phase patterns, we construct syn-

aptic connectionsl; by applying the generalized Hebbian  Let us consider the situation in which the network is re-
rule: calling the patternfil, namely,
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Next, we examine the time development of the variance
(p#1). 13  {|lz(t)|®=20(t) First, we consider the synaptic noise
Z(t+1)=3,7;S,(t+1). When we take the statistics of
z>(t+1), we must take into account correlations betwegn
and #; in S§(t+1). Here, expanding Sj(t+1)
zhj(t)/(h (t)] in terms of ;; yields

mi(t)~0(1), m"(t)~0< i

VN

The internal potentiah;(t) in Eq. (2) can be separated as

N N p
; iSH=EM )+ ; 2 & S<t)+2 7iiS;(1), v
- 1 | i 77|J77]| 19
(14) Z3(t+1)= E oo +S(t )E T (19)

where &= ¢! and M (t)=M2(t). From this point, for sim- o ,
plicity, we drop the indexs in the case of pattern 1. In this Wherehj(t) is assumed to be independent gf . If the
process, the first term on the right hand sides) of Eq.(14)  dilution is asymmetric,n; # 7;; (or ¢;;#c;;), the second

is regarded as the signal to induce recollection of the targgerm vanishes. Even if it were symmetric, the assumption
pattern¢!, while the remaining terms are regarded as noisethat the mean of the noise is 0 would lead us to neglect the
For convenience, we define the noise tem{s$) as second term proportional t§;(t), since it is related to the

mean ofz’(t+1). As a result, we obtain
N

N p
=—> D EES() +E 7;Si(1). oy(t+1)%= 72 (20)

JFI u=2

le—\

z(t) =z (1) + Z(t

(15 Second, consider the crosstalk noxgt+1). We ex-

. . . ressz’(t+1) as
In z;(t), z°(t) is the crosstalk noise from unretrieved patternsp i )

(u#1), andz’(t) is caused by noise in the synapses. The 1 NP hi(t)

essence of the theory is to treat the crosstalk noiég as [(t+1)= NE 2 & |h]( Ik (21)
complex Gaussian noise with mean 0 and variange)?. It #lp=2

has been confirmed numerically that this assumption is valigynen summing over, as in the case of Eq19), we must

as long as the network succeeds in retri¢28]. In addition, consider the dependence hf(t) on f" In the local field
the synaptic noisez’(t) is also assumed to be complex hy(t), the term

Gaussian with mean 0 and varianeg(t)? [25]. Therefore,

z;(t) displays a complex Gaussian distribution with mean 0

and variance @2= o(t)?+ o4(t)?. Here, we also assume —E EELS(D) ~ EMA(Y), (22
z{(t) andz(t) to be independent. We note tha(t) can be

expressed with two independent Gaussian variahléy and  which is caused by the non-target pattgrnis estimated to

yi(t) satisfying be O(lA/N). Using this estimation, we expand the complex
2(O)=x (O +iy(1),  x(D) (O ~NO(1)?), function h;(t)/|h;(t)|, obtaining
b )
i(Hyi(H))=0. 16 1)=— grgm L
(X (Dyi(t)) (16) Z(t+1) ;. 22 e

Now we derive a dynamical equation for the overlap with
the recalled pattern. The definition of overl@ leads to the
equation

M
% 1
iZi 2|hf‘(t)| N o=2

Z|l -

+

N
. ~ &MtV +z(t)
1)elet+l = 4 (1
m(t+1)e E EmOe 0 2,(0) 17) +0

: (23

The variablez;(t) represents Gaussian noise. Then, becausgnere h#(t)=&M(t) + (1) EE¢j25¢1,ﬂ§}}EﬁSk(t)+Zs(t)

of the symmetry of its distribution, we assuragt) pro- i assumed to be independent&yf. Accordingly, we find
duces no effect to change(t). This assumption has been

confirmed numerically. Using this assumption, i.e., setting 1 NP _
o(t)=¢g, We obtain zf(t+1)=NE > EES(t+ D) +UDZ(Y), (29
iFi p=2
N —i )
1o m(t)+z(t)e '(wotb)
m(t+1)= (H*2© and
=1 [m(t)+z;(t)e v+ )| N
1
N U(t 2EMOF 0] 25
2 M (18) ©= N121 2[EM (1) +z(1)] @9
Ni=1 [m(t) +z;(1)]

‘ where we have used the fa&t‘(t)—h;(t) in the limit
Here, we use the fact that the distributionzrpqt)e"(‘F’o+ %) N—-co in Eq. (24). Squaring Eq(24) and averaging in order
can be obtained by simply rotating that z{t). to obtaino(t+1), we obtain
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o(t+1)?=a+U(t)%0(1)?

>«

Finally, the macrodynamical equations for thth order
approximation are given as follows:

N
+2U(HR Z S (t+ 1) ZH(Y) ),

NiZi 4 (t41) < m(t) +z(t) > 28

m = TooreN | —7en ]| L

(26) Im©+zv]/

wherea=p/N.
We can calculate the last term in E@6) by means of 1
substituting Eq(24) into Eq. (26) iteratively. Then, we need ut)= 2mO+z0] /. (29)
z(t)

the following quantities:

X(t+1t+1—7)

=Re{%z S(t+1)S(t+1-17)
J

n

20(t+1)2=a+2U(1)20(t)2+2a >, X(t+1t+1—1)
=1

T

xkf[ U(t+1—Kk)+[1—-U(t)4] %%, (30)
=1

{ 2 M(t)+z(t) EMt—n+Z,(t—n)
IEJM(t +zi(O] [EMt—n+7Zt-0)|]

(27 where

To carry out the average in the above equation, we must
generally take account of the correlatonCc@,t—7)  X(t+1t+1-7)

=(z(t)Z(t—7)). The estimation so obtained up to thén

preceding time step is called theh order approximation m(t)+z(t) m(t—7)+z(t—7)
L -R

[22]. In the nth order approxmatlo_n, we assume that the M)+ 2] [m(t—7)+2(t—7)]

Z(t—n+1), is correlated

noise at each time(t—1),

T > 2t).2(t— 1)

to z(t), while z(t—n) is independent of(t). Using Eq.(24) 3D
as Eq.(26) was used above, we can obtain equations for

C(t,t—17).

and

aX(t,t— )+2U(t—1)U(t— —1)C(t—1t—7—1)
n-1

ta 2 X(tt= k) H U(t—«k)

2C(t,t—7)= ! K 32
(tt=n= +ak2 X(t—kt—7) [] U(t—x)+ n2X(t,t—7) (Is7<n-2) (32
=1 k=1
aX(tt—7)+2U(t—1)C(t—1t— 1)+ »°X(t,t—7) (7=n—1)
\ O (m=n).

We have assumed here that the site averade¢){--- does  behavior found through numerical simulations and in theo-

not depend on the memorized pattern and, for a giwét), retical analyses, respectively. It is observed that the two sets
o(t), does not depend on the initial pattern. In this case, thisf results are in good agreement, especially when the net-
average is identical td---),, wherez(t) represents an work succeeds in retrieval. In both figures, while the curves

arbitrary z;(t). Here, we should note thai(t) is given by  starting at the initial overlapn(0)=0.3 reach the equilib-

m(t),o(t), and X(t+1t+1-7) by m(t),m(t—7),0(t),  rium valuem(>)~1, the curves fom(0)=0.1 decrease. In
o(t—7). When calculating these coupled equatid@8),  this case, the basin is found to lie between 0.1 and 0.3.
(29), (30), (31), and(32), it is necessary to give initial con-  Figure 2 indicates results of theoretical analysis and nu-

ditions m(0), o(0)*=a/c, and X(t,0). We useX(t,0) merical simulation in the case of=0 (or c=1.0). The

=m(t)m(0) as an approximation.

IV. THE RESULTS

upper part and the lower part of the theoretical curves repre-
sent the equilibrium overlam.,(a) and the basin of attrac-

tion my(«), respectively. Both of these are obtained as func-
tions of @. The vertical parts of the curves represent the

First, we show the time evolution of the overlap for sev-storage capacityr.. Of the four curves, the fourth order
eral initial overlaps. In Fig. 1(a) and (b) display typical approximation is in best agreement with the numerical simu-
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FIG. 3. Comparison between the effects of symmetric and
asymmetric dilution. The solid curves represent the theoretical re-
sults at fourth order. The ratios of connected synapsegare
=0.1, (b) c=0.3, (¢c) c=0.5, and(d) c=0.7. For reference, the
result for the case=1.0(i.e., the fully connected capis indicated

. . . by the dashed curves.
lations. From this result, it is found that we must take ac-

count of higher order temporal correlations of noxé) to

FIG. 1. Typical time evolution of overlaps fox=0.03, ¢
=0.5, and the initial overlaps1=0.1, 0.3, 0.5, and 0.7a) Numeri-
cal simulation withN=1000. (b) Theoretical curves for the fourth-
order approximation.

study, this has been confirmed in the case of asymmetric

predict the behavior of the present model. _ dilution as well. Furthermore, we have found that the basin
For various values of the dilution parametemumerical  emains sufficiently wide even for small valuesof

simulation and theoretical analysis were carried out. These o compare the width of the basin of the present model

results are given in Fig. 3. Here, the simulations were dongyith that of the traditional model in Fig. 5. Since the network
in the case of symmetric dilutiorc(;=c;;) and asymmetric |atrieves the target pattern when(0)>my(), we adopt

dilution (c;;#¢;;). We confirm that there is no discrepancy 1 _m (4) as the width of the basin. This figure contains a
between in the two cases as long as we consider statistic 4th

. M it is ob d that th al | |ot of 1— m0(0.8a§'“’) for each model. Hereg, " is the
properﬂe;. oreover, it IS ODSEIVEC t "’.‘t theoretical result torage capacity obtained with the fourth order approxima-
are consistent with the simulations in this case as well.

. . ) tion. Making such a comparison, we see that the oscillator
In Fig. 4, we display the dependence on the ratio of con g P

) : ‘model has wider basin and is more robust against synaptic
nected synapses. If ¢=0.3, although the vertical lines 9 ynap

dilution.
move to left, the upper and lower curves are affected only

slightly. The two curves do not approach each other until
reaches 0.1. In a previous stufys], we found that, for the V. CONCLUSION
case of symmetric dilution, equilibrium overlap remains

comparatively large even i is quite small. In the present Applying the theory of statistical neurodynamics to oscil-

lator neural networks, we have obtained clear results for the
case of random synaptic dilution. We found that numerical

1o e ——— simulations support our theoretical results. The main results
T~ obtained in this study are as follows.
| N
® simulation E | L0 s T v
—— Ist order ' ! R S
--- 2nd order E : \\ N ﬁ\\
05 o 3rd order i 1 ‘.l 'l '
— 4th order ! : i : i
| ) =005 | I
/,' /// —— ¢=0.1 i l i
‘ o £ 05} ——- c=02 | . .
,,,,,, - 03 |
00 — ¢=0.5 [ { i
' 006 008 0.0 °=‘1"z ! '
a Cc=1.
FIG. 2. The equilibrium overlap and basin of attraction. The 0 == ) , )
four curves represent the theoretical results for various order ap- "0.00 0.01 0.02 0.03 0.04 0.05
proximations. The ordinate is the overlapand the abscissa is the o

storage ratiox. The data points indicate simulation results with

=1000 for 20 trials. The upper part, the lower part, and the vertical FIG. 4. Dependence of the theoretical curve on the ratio of
part of the theoretical curves represent the equilibrium overlap, theonnected synapses These curves were obtained with the fourth
basin of attraction, and the storage capacity, respectively. order approximation.
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L0 (iii) The widths of basins in the oscillator model are wider
&, . than that in the binary model. Moreover, the oscillator model
o * * * . .
is found to be more robust against decrease.of
- o o In conclusion, we have found that the oscillator neural
L o ) network exhibits good performance while processing de-
0.5 1

tailed information such as the timing of neuronal firings. Our
O binarv neturon results support the plausibility of temporal coding.
© osci 4 Finally, let us make a comment leading to future prob-
oscillator neuron . . . .
lems. When we carried out numerical simulation of the os-
cillator neural networks, it was observed that a network is
0.0 . rarely trapped in spurious states. This may be one factor
0.0 0.5 L0 responsible for the ability of the oscillator network to recall
¢ from considerably noisy patterns. Though this point has not
FIG. 5. Comparison of the sizes of basins for the oscillator and/€t been investigated in the general case, the cage=@
binary models near saturation®". (_thgt in which the num_ber of_patterrpsrem_alns finite in the
limit N—o0) has been investigated, and it has been reported
) ) h , ¢ th « that the symmetric mixture states are all unstaihl26,27.
h (i) In olzder to descnbi the properties ?1 th,e rTetwor Sinvestigation of the case for finite should provide a deeper
theoretically, we must take into account the higher ordel,,qerstanding of characteristics of oscillator neural net-
temporal correlations of noise. The present study shows th%orks
it is necessary to consider at least the fourth order approxi-
mation.
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