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Effect of random synaptic dilution on recalling dynamics in an oscillator neural network

Katsunori Kitano and Toshio Aoyagi
Department of Applied Mathematics and Physics, Kyoto University, Kyoto 606-01, Japan

~Received 12 September 1997!

In the present paper, we study the effect of random synaptic dilution in an oscillator neural network in which
information is encoded by the relative timing of neuronal firing. In order to analyze the recalling process in this
oscillator network, we apply the method of statistical neurodynamics. The results show that the dynamical
equations are described by some macroscopic order parameters, such as that representing the overlap with the
retrieved pattern. We also present the phase diagram showing both the basin of attraction and the equilibrium
overlap in the retrieval state. Our results are supported by numerical simulation. Consequently, it is found that
both the attractor and the basin are preserved even though dilution is promoted. Moreover, as compared with
the basin of attraction in the traditional binary model, it is suggested that the oscillator model is more robust
against the synaptic dilution. Taking into account the fact that oscillator networks contain more detailed
information than binary networks, the obtained results constitute significant support for the plausibility of
temporal coding.@S1063-651X~98!11405-8#

PACS number~s!: 87.10.1e, 05.90.1m
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I. INTRODUCTION

In recent years, many attempts have been made to
neural network models more realistically than did tradition
ones such as the Hopfield model@1#. Progress in the physi
ological understanding of real neural systems, for exam
neuronal activity and morphology of synaptic connectivitie
has led theoretical interests to those various models w
biological validity. With this trend, many models whose pu
pose is to grasp the essence of more detailed dynamics
neuron have been proposed and analyzed. From the the
ical point of view, models capable of describing the contin
ous behavior of neuronal activities are expected to be su
rior in information processing. In particular, oscillator neu
networks have come to be one of the most intriguing mod
in this context, since it was reported that collective oscil
tory behavior may contribute to information processing
biological systems@2,3#. This is because such models a
simple enough to allow for theoretical analysis, while th
also contain the essence of the temporal features of neur
activity. The results obtained through the analysis of suc
simple model are sure to further our understanding not o
of more complex models but of real neural systems.

Many interesting analyses concerning oscillator neu
networks have been reported@4–11#. However, we will only
briefly survey the results related to our model. In the case
autoassociation of random phase patterns with Hebb
learning, the storage capacityac50.038 is estimated using
the replica theory@12,13#. An oscillator model with sparse
connectivity has been analyzed by Noest@14#. We have in-
vestigated equilibrium properties in the situation involvi
synaptic damage@15#. Recently, we have studied the r
trieval dynamics for both autoassociation and phase
quence generator@16#. However, despite these works, osc
lator models remain poorly understood.

For the purpose of estimation of performance with reg
to associative memory, it is necessary to consider two imp
tant aspects of association, one concerning the attractor
the other concerning the basin. However, most previ
571063-651X/98/57~5!/5914~6!/$15.00
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studies are restricted to properties of the attractor, such
equilibrium overlap and storage capacity. However, cons
ering the associative ability for a noisy pattern to be dyna
cally corrected, in order to obtain a proper measure o
model’s performance, it is necessary to study the basin
attraction also. In order to discuss the basin, we must t
the dynamics of recalling.

For traditional models, several theoretical analyses on
namics of retrieval processes have been reported. Using
method of generating functionals and path integrals, a g
eral theory can be formulated@17#. Although this method
yields an exact description, a suitable approximation is
quired in order to obtain practical results@18#. In the case of
parallel dynamics, the result turns out to be simple so that
exact prediction of the retrieval dynamics for the initial fe
steps is possible@19#. As for arbitrary finite time scale, the
dynamical replica theory has been proposed recently@20#.
On the other hand, as an approximation method, the sta
cal neurodynamics theory has been proposed@21,22#. Al-
though the approximation used in this approach is crude
sense, it is practically useful to predict long term behav
when a network succeeds in retrieval@23#. Finally, we
should note that, under suitable conditions, the theoret
result from the statistical neurodynamics can be obtai
also by the path integral method.

In the present paper, we discuss the retrieval dynamic
an oscillator network with diluted synapses. However, it
expected that the rigorous treatment for such a networ
more complicated than that for traditional binary mode
Therefore, following our previous work@16#, we apply the
theory of statistical neurodynamics, which enable us to
tain fruitful results more easily. In the next section, we i
troduce an oscillator neural network model treated here. S
tion III contain a theoretical analysis of the recalling proce
in this network. Using the derived dynamical equations d
scribing the time development of some macroscopic par
eters such as that representing overlap, we examine the e
of dilution on both the attractor and the basin. These th
retical results are verified by means of numerical simulat
5914 © 1998 The American Physical Society
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in Sec. IV. In Sec. V, we give a brief summary and conc
sion.

II. OSCILLATOR NEURAL NETWORK MODEL

We now describe the model treated in the present pa
The state of thei th neuron at timet is represented by

Si~ t !5exp@ if i~ t !#, ~1!

where f i(t) is the phase of thei th neuron at timet. We
should remark that this phase corresponds to the timing
neuronal firing. The oscillator network evolves according
the synchronous dynamics:

Si~ t11!5
hi~ t !

uhi~ t !u
, hi~ t !5(

j Þ i

N

Ji j Sj~ t !, ~2!

wherehi(t) is the internal potential of thei th neuron at time
t andJi j is the synaptic connection between thei th and the
j th neurons.

We construct this model not only as a simple extension
traditional models but following a theoretical basis
coupled oscillator systems. The system consists of a num
of nonlinear oscillatory units. Although, in general, even t
behavior of such a unit is described by a dynamical equa
involving a set of state variables, it is well known that such
system can be reduced to a system characterized by si
phase variables under suitable conditions@24#. The equations
obtained with such a reduction technique are given by

df i

dt
5(

j Þ i

N

Ki j sin~f j2f i1b i j !. ~3!

To interpret the above system in the context of traditio
neural networks, we introduce the complex representa
Si5exp(ifi) into the above equation. Then, the equilibriu
state satisfies the conditions

Si5
hi

uhi u
, hi5(

j

N

Ji j Sj , ~4!

whereJi j 5Ki j exp(ibij). Clearly, the equilibrium state~4! of
the dynamics described by Eq.~3! is identical with that of
the dynamics described by Eq.~2!. However, generally, ow-
ing to different dynamics, these systems may exhibit qua
tative or even qualitative differences. Numerical simulati
suggests that these differences are in most cases negli
@16#.

The synaptic connectionJi j should be determined appro
priately so that the system can perform as an associa
memory model. We denote the set of patterns to be me

rized by the network as complex variables,j i
m5eiu i

m
. The

value j i
m represents the state of thei th unit in themth pat-

tern. Here, we examine the case of random patterns;u i
m is a

uniform random number between 0 and 2p. To make the
network memorizep such phase patterns, we construct sy
aptic connectionsJi j by applying the generalized Hebbia
rule:
-
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Ji j 5
1

N (
m51

p

j i
m j̃ j

m , ~5!

where j̃ j
m is the complex conjugate ofj j

m .
To discuss robustness against damage of synaptic con

tions, we define

J̄i j 5
ci j

c
Ji j , ~6!

as the formulation for randomly diluted synapses. Here,
ci j are independent random variables, which assume the
ues 1 and 0 with probabilitiesc and 12c, respectively. Note
that the dilution parameterc represents the ratio of connec
tions. In the limit N→`, the expression in Eq.~6! can be
regarded as that of synaptic connections with static no
@25#,

J̄i j 5Ji j 1h i j . ~7!

The synaptic noiseh i j is a complex Gaussian noise wit
mean 0 and varianceh2/N. It is easy to determine the rela
tion between the dilution ratioc and the variance paramete
h2 as

h25
12c

c
a. ~8!

For the sake of simplicity in later theoretical analysis, w
adopt the expression of Eq.~7!.

To investigate various features of the recalling process
is useful to define the overlap

Mm~ t !5mm~ t !eiwm~ t !5
1

N(
j 51

N

j̃ j
mSj~ t ! ~9!

as the order parameter of our system. As the network’s c
figuration Si(t) approaches the target patternj i

m , the abso-
lute valuemm increases to unity.

Finally, in the retrieval process of the oscillator neur
network

Si~ t11!5
hi~ t !

uhi~ t !u
, ~10!

hi~ t !5(
j Þ i

N

J̄i j Sj~ t !, ~11!

J̄i j 5
ci j

Nc(
m51

p

j i
m j̃ j

m , ~12!

we mainly discuss the time development of the overlap~9!
along with certain other macroscopic parameters.

III. THEORETICAL ANALYSIS

Let us consider the situation in which the network is r
calling the patternj i

1 , namely,
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m1~ t !;O~1!, mm~ t !;OS 1

AN
D ~mÞ1!. ~13!

The internal potentialhi(t) in Eq. ~2! can be separated as

(
j Þ i

N

J̄i j Sj~ t !5j iM ~ t !1
1

N(
j Þ i

N

(
m52

p

j i
m j̃ j

mSj~ t !1(
j Þ i

N

h i j Sj~ t !,

~14!

wherej i5j i
1 and M (t)5M1(t). From this point, for sim-

plicity, we drop the indexm in the case of pattern 1. In thi
process, the first term on the right hand side~rhs! of Eq. ~14!
is regarded as the signal to induce recollection of the ta
patternj i

1 , while the remaining terms are regarded as no
For convenience, we define the noise termszi(t) as

zi~ t !5zi
c~ t !1zi

s~ t !5
1

N(
j Þ i

N

(
m52

p

j i
m j̃ j

mSj~ t !1(
j Þ i

N

h i j Sj~ t !.

~15!

In zi(t), zi
c(t) is the crosstalk noise from unretrieved patter

(mÞ1), andzi
s(t) is caused by noise in the synapses. T

essence of the theory is to treat the crosstalk noisezi
c(t) as

complex Gaussian noise with mean 0 and variancesc(t)
2. It

has been confirmed numerically that this assumption is v
as long as the network succeeds in retrieval@23#. In addition,
the synaptic noisezi

s(t) is also assumed to be comple
Gaussian with mean 0 and variancess(t)

2 @25#. Therefore,
zi(t) displays a complex Gaussian distribution with mean
and variance 2s t

25sc(t)
21ss(t)

2. Here, we also assum
zi

c(t) andzi
s(t) to be independent. We note thatzi(t) can be

expressed with two independent Gaussian variablesxi(t) and
yi(t) satisfying

zi~ t !5xi~ t !1 iy i~ t !, xi~ t !,yi~ t !;N„0,s~ t !2
…,

^xi~ t !yi~ t !&50. ~16!

Now we derive a dynamical equation for the overlap w
the recalled pattern. The definition of overlap~9! leads to the
equation

m~ t11!eiw~ t11!5
1

N(
j

N

j̃ j

j jm~ t !eiw~ t !1zj~ t !

uj jm~ t !eiw~ t !1zj~ t !u
. ~17!

The variablezj (t) represents Gaussian noise. Then, beca
of the symmetry of its distribution, we assumezj (t) pro-
duces no effect to changew(t). This assumption has bee
confirmed numerically. Using this assumption, i.e., sett
w(t)5w0 , we obtain

m~ t11!5
1

N(
j 51

N
m~ t !1zj~ t !e2 i ~w01u j !

um~ t !1zj~ t !e2 i ~w01u j !u

5
1

N(
j 51

N
m~ t !1zj~ t !

um~ t !1zj~ t !u
. ~18!

Here, we use the fact that the distribution ofzj (t)e
2 i (w01u j )

can be obtained by simply rotating that ofzj (t).
et
.

s
e

id

0
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g

Next, we examine the time development of the varian
^uzi(t)u2&52s(t)2. First, we consider the synaptic nois
zi

s(t11)5( j Þ i
N h i j Sj (t11). When we take the statistics o

zi
s(t11), we must take into account correlations betweenh i j

and h j i in Sj (t11). Here, expanding Sj (t11)
5hj (t)/uhj (t)u in terms ofh j i yields

zi
s~ t11!5(

j Þ i

N

h i j

hj
0~ t !

uhj
0~ t !u

1Si~ t !(
j Þ i

N
h i j h j i

2uhj
0~ t !u

, ~19!

where hj
0(t) is assumed to be independent ofh j i . If the

dilution is asymmetric,h j i Þh̃ i j ~or ci j Þcji ), the second
term vanishes. Even if it were symmetric, the assumpt
that the mean of the noise is 0 would lead us to neglect
second term proportional toSi(t), since it is related to the
mean ofzi

s(t11). As a result, we obtain

ss~ t11!25h2. ~20!

Second, consider the crosstalk noisezi
c(t11). We ex-

presszi
c(t11) as

zi
c~ t11!5

1

N(
j Þ i

N

(
m52

p

j i
m j̃ j

m hj~ t !

uhj~ t !u
. ~21!

When summing overm, as in the case of Eq.~19!, we must
consider the dependence ofhj (t) on j j

m . In the local field
hj (t), the term

1

N(
kÞ j

N

j j
m j̃ k

mSk~ t !;j j
mMm~ t !, ~22!

which is caused by the non-target patternm, is estimated to
be O(1/AN). Using this estimation, we expand the compl
function hj (t)/uhj (t)u, obtaining

zi
c~ t11!5

1

N(
j Þ i

N

(
m52

p

j i
m j̃ j

m
hj

m~ t !

uhj
m~ t !u

1
1

N(
j Þ i

N
1

2uhj
m~ t !u

1

N(
kÞ i

N

(
m52

p

j i
m j̃ k

mSk~ t !

1OS 1

AN
D , ~23!

where hj
m(t)5j jM (t)1 (1/N) (kÞ j

N (nÞ1,m
p j j

n j̃ k
nSk(t)1zs(t)

is assumed to be independent ofj j
m . Accordingly, we find

zi
c~ t11!5

1

N(
j Þ i

N

(
m52

p

j i
m j̃ j

mSj~ t11!1U~ t !zi
c~ t !, ~24!

and

U~ t !5
1

N(
j 51

N
1

2uj jM ~ t !1zj~ t !u
. ~25!

where we have used the facthj
m(t)→hj (t) in the limit

N→` in Eq. ~24!. Squaring Eq.~24! and averaging in orde
to obtainsc(t11), we obtain
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sc~ t11!25a1U~ t !2sc~ t !2

12U~ t !ReK 1

N(
j Þ i

N

(
m52

p

j i
m j̃ j

mSj~ t11! z̃ i
c~ t !L ,

~26!

wherea5p/N.
We can calculate the last term in Eq.~26! by means of

substituting Eq.~24! into Eq.~26! iteratively. Then, we need
the following quantities:

X~ t11,t112t!

5ReF 1

N(
j

Sj~ t11! S̃j~ t112t!G
5ReF 1

N(
j

j jM ~ t !1zj~ t !

uj jM ~ t !1zj~ t !u
j̃ j M̃ ~ t2t!1 z̃ j~ t2t!

u j̃ j M̃ ~ t2t!1 z̃ j~ t2t!u
G .

~27!

To carry out the average in the above equation, we m
generally take account of the correlation 2C(t,t2t)
5^z(t) z̃(t2t)&. The estimation so obtained up to thenth
preceding time step is called thenth order approximation
@22#. In the nth order approximation, we assume that t
noise at each time,z(t21), . . . ,z(t2n11), is correlated
to z(t), while z(t2n) is independent ofz(t). Using Eq.~24!
as Eq. ~26! was used above, we can obtain equations
C(t,t2t).
th

-

v

st

r

Finally, the macrodynamical equations for thenth order
approximation are given as follows:

m~ t11!5 K m~ t !1z~ t !

um~ t !1z~ t !u L
z~ t !

, ~28!

U~ t !5 K 1

2um~ t !1z~ t !u L
z~ t !

, ~29!

2s~ t11!25a12U~ t !2s~ t !212a(
t51

n

X~ t11,t112t!

3)
k51

t

U~ t112k!1@12U~ t !2#h2, ~30!

where

X~ t11,t112t!

5ReK m~ t !1z~ t !

um~ t !1z~ t !u
m~ t2t!1z~ t2t!

um~ t2t!1z~ t2t!u L
z~ t !,z~ t2t!

,

~31!

and
2C~ t,t2t!55
aX~ t,t2t!12U~ t21!U~ t2t21!C~ t21,t2t21!

1a (
k5t11

n21

X~ t,t2k! )
k5t11

k

U~ t2k!

1a (
k51

n21

X~ t2k,t2t! )
k51

k

U~ t2k!1h2X~ t,t2t! ~1<t<n22!

aX~ t,t2t!12U~ t21!C~ t21,t2t!1h2X~ t,t2t! ~t5n21!

0 ~t5n!.

~32!
o-
sets
net-
es

nu-

re-
-
nc-
he
r
u-
We have assumed here that the site average (1/N) ( j¯ does
not depend on the memorized pattern and, for a givenm(t),
s(t), does not depend on the initial pattern. In this case,
average is identical tô¯&z(t) , where z(t) represents an
arbitrary zi(t). Here, we should note thatU(t) is given by
m(t),s(t), and X(t11,t112t) by m(t),m(t2t),s(t),
s(t2t). When calculating these coupled equations~28!,
~29!, ~30!, ~31!, and~32!, it is necessary to give initial con
ditions m(0), s(0)25a/c, and X(t,0). We useX(t,0)
5m(t)m(0) as an approximation.

IV. THE RESULTS

First, we show the time evolution of the overlap for se
eral initial overlaps. In Fig. 1,~a! and ~b! display typical
is

-

behavior found through numerical simulations and in the
retical analyses, respectively. It is observed that the two
of results are in good agreement, especially when the
work succeeds in retrieval. In both figures, while the curv
starting at the initial overlapm(0)>0.3 reach the equilib-
rium valuem(`);1, the curves form(0)50.1 decrease. In
this case, the basin is found to lie between 0.1 and 0.3.

Figure 2 indicates results of theoretical analysis and
merical simulation in the case ofh50 ~or c51.0). The
upper part and the lower part of the theoretical curves rep
sent the equilibrium overlapm`(a) and the basin of attrac
tion m0(a), respectively. Both of these are obtained as fu
tions of a. The vertical parts of the curves represent t
storage capacityac . Of the four curves, the fourth orde
approximation is in best agreement with the numerical sim
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lations. From this result, it is found that we must take a
count of higher order temporal correlations of noisez(t) to
predict the behavior of the present model.

For various values of the dilution parameterc, numerical
simulation and theoretical analysis were carried out. Th
results are given in Fig. 3. Here, the simulations were d
in the case of symmetric dilution (ci j 5cji ) and asymmetric
dilution (ci j Þcji ). We confirm that there is no discrepanc
between in the two cases as long as we consider statis
properties. Moreover, it is observed that theoretical res
are consistent with the simulations in this case as well.

In Fig. 4, we display the dependence on the ratio of c
nected synapsesc. If c>0.3, although the vertical line
move to left, the upper and lower curves are affected o
slightly. The two curves do not approach each other untc
reaches 0.1. In a previous study@15#, we found that, for the
case of symmetric dilution, equilibrium overlap remai
comparatively large even ifc is quite small. In the presen

FIG. 1. Typical time evolution of overlaps fora50.03, c
50.5, and the initial overlapsm50.1, 0.3, 0.5, and 0.7.~a! Numeri-
cal simulation withN51000. ~b! Theoretical curves for the fourth
order approximation.

FIG. 2. The equilibrium overlap and basin of attraction. T
four curves represent the theoretical results for various order
proximations. The ordinate is the overlapm and the abscissa is th
storage ratioa. The data points indicate simulation results withN
51000 for 20 trials. The upper part, the lower part, and the vert
part of the theoretical curves represent the equilibrium overlap,
basin of attraction, and the storage capacity, respectively.
-

e
e

cal
ts

-

ly

study, this has been confirmed in the case of asymme
dilution as well. Furthermore, we have found that the ba
remains sufficiently wide even for small values ofc.

We compare the width of the basin of the present mo
with that of the traditional model in Fig. 5. Since the netwo
retrieves the target pattern whenm(0).m0(a), we adopt
12m0(a) as the width of the basin. This figure contains
plot of 12m0(0.8ac

4th) for each model. Here,ac
4th is the

storage capacity obtained with the fourth order approxim
tion. Making such a comparison, we see that the oscilla
model has wider basin and is more robust against syna
dilution.

V. CONCLUSION

Applying the theory of statistical neurodynamics to osc
lator neural networks, we have obtained clear results for
case of random synaptic dilution. We found that numeri
simulations support our theoretical results. The main res
obtained in this study are as follows.

p-

l
e

FIG. 3. Comparison between the effects of symmetric a
asymmetric dilution. The solid curves represent the theoretical
sults at fourth order. The ratios of connected synapses are~a! c
50.1, ~b! c50.3, ~c! c50.5, and~d! c50.7. For reference, the
result for the casec51.0 ~i.e., the fully connected case! is indicated
by the dashed curves.

FIG. 4. Dependence of the theoretical curve on the ratio
connected synapsesc. These curves were obtained with the four
order approximation.
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~i! In order to describe the properties of the netwo
theoretically, we must take into account the higher or
temporal correlations of noise. The present study shows
it is necessary to consider at least the fourth order appr
mation.

~ii ! For all values ofc, theoretical results are in goo
agreement with numerical simulation. These theoret
curves indicate equilibrium overlaps and basins change l
even if c decreases to about 0.3. Furthermore, the ba
remain sufficiently wide near saturation.

FIG. 5. Comparison of the sizes of basins for the oscillator a
binary models near saturation,ac

4th.
re

m

v.
s
r
at
i-

l
le
ns

~iii ! The widths of basins in the oscillator model are wid
than that in the binary model. Moreover, the oscillator mo
is found to be more robust against decrease ofc.

In conclusion, we have found that the oscillator neu
network exhibits good performance while processing
tailed information such as the timing of neuronal firings. O
results support the plausibility of temporal coding.

Finally, let us make a comment leading to future pro
lems. When we carried out numerical simulation of the o
cillator neural networks, it was observed that a network
rarely trapped in spurious states. This may be one fa
responsible for the ability of the oscillator network to rec
from considerably noisy patterns. Though this point has
yet been investigated in the general case, the case ofa50
~that in which the number of patternsp remains finite in the
limit N→`) has been investigated, and it has been repo
that the symmetric mixture states are all unstable@11,26,27#.
Investigation of the case for finitea should provide a deepe
understanding of characteristics of oscillator neural n
works.
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